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The identification of flow pattern is a basic and important issue in multiphase systems. Because of the
complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objec-
tively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using
complex network. Three unique network construction methods are proposed to build three types of networks,
i.e., flow pattern complex network �FPCN�, fluid dynamic complex network �FDCN�, and fluid structure
complex network �FSCN�. Through detecting the community structure of FPCN by the community-detection
algorithm based on K-mean clustering, useful and interesting results are found which can be used for identi-
fying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of
gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law
exponent and the network information entropy, which are sensitive to the flow pattern transition, can both
characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and dem-
onstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this
paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid
two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time
series in practice.
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I. INTRODUCTION

Gas-liquid two-phase flow very often exists in industrial
applications such as filtration, lubrication, spray processes,
natural gas networks, and nuclear reactor cooling. In the
study of two-phase flow, flow patterns indicate how the
phases are distributed and mixed due to the physical nature
of the system. Two-phase flow patterns depend on the type of
fluid-fluid combination, the flow rates and direction, and the
conduit shape, size, and inclination. Further, heat and mass
transfer rates, momentum loss, rate of back mixing, and pipe
vibration all vary greatly with the flow patterns. Hence, it is
quite important and necessary to discern the flow patterns
and study the nonlinear dynamics in different flow patterns.

The early studies were mostly based on direct observa-
tions. High-speed photography technique, x-ray attenuation
picture, and suchlike are some of the methods in which the
flow patterns are detected from direct observations. Although
these methods are inexpensive and, in most cases, easy to
perform, they are to a great extent subjective. Moreover the
major difficulty in direct observation, even using high-speed
photography, is that the picture is often confusing and diffi-
cult to interpret, especially when dealing with high velocity
flows. Furthermore, in order to increase the objectivity, indi-
rect methods were developed. Such methods mainly deal
with the fluctuating properties of two-phase flow, and the
fluctuations can be observed in the local pressure, the instan-
taneous two-phase mixture ratio, and suchlike. Rouhani and
Sohal �1�, and Das and Pattanayak �2� pointed out that there
is a correlation between flow patterns and the fluctuation
characteristics of the two-phase flow properties. Hence, at-

tempts at the characterization of gas-liquid two-phase flow
patterns based on a combination of subjective judgments and
objective methods have been made. Hubbard and Dukler �3�
calculated the power spectral density �PSD� for two-phase
pressure-drop signals. Jones and Zuber �4� and Vince and
Lahey �5� employed transient x-ray attenuation techniques,
and calculated the PSD and the probability density function
for chordal void fraction fluctuations. Zhang et al. �6� calcu-
lated Shannon entropy of two-phase flow systems from the
power spectral density. Daw and co-workers �7–9� inter-
preted experimental pressure-drop measurements from a
complex gas-solid flow system in terms of the methods for
chaotic time-series analysis, and discussed issues concerning
the reconstruction of attractors from experimental chaotic
time-series data using Taken’s method of delays.

In recent years, with the development of modern signal
processing techniques, there has been much progress in the
software measurement techniques. Mi et al. �10� applied a
neural network to two-phase flow pattern identification in a
vertical channel using signals from electrical capacitance
probes. Warsito and Fan �11� utilized a neural network-based
multicriterion optimization image reconstruction technique
for imaging multiphase flow systems from electrical capaci-
tance tomography. Yan et al. �12� identified the two-
component flow regimes using back-propagation networks.
Xiao et al. �13� established the general description method of
chaotic attractor morphological characteristic using refer-
enced sections, and put forward a new gas-liquid two-phase
flow pattern classification method by combining the chaotic
attractor morphological feature parameters of different di-
mensions. Although there has been some achievement in the
study of gas-liquid two-phase flow, in conditions close to a
transition between two patterns, detecting the flow pattern is
crucially difficult. Furthermore, due to the complex nature of*Corresponding author; ndjin@tju.edu.cn
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gas-liquid two-phase flow, theoretical analyses have not been
able to describe this complex system perfectly.

Meanwhile, the past few years have witnessed dramatic
advances in the field of complex networks since the publica-
tion of the seminal works of Watts and Strogatz �14� as well
as Barabási and Albert �15�. Complex networks, which have
been observed to arise naturally in a vast range of physical
phenomena, can describe any complex system that contains
massive units �or subsystems� with nodes representing the
component units and edges standing for the interactions be-
tween them. Many complex systems have been examined
from the viewpoint of complex networks. Examples include
world wide web �16�, metabolic networks �17�, protein net-
works in the cell �18�, traffic networks �19�, sexual networks
�20�, earthquake networks �21�, and human electroencepha-
logram networks �22�. These empirical studies have inspired
researchers to develop a variety of techniques and models to
help us understand or predict the behavior of complex sys-
tems �23–25�. Complex networks, which provide us with a
new viewpoint and an effective tool for understanding a
complex system from the relations between the elements in a
global way, not only may be a powerful tool for revealing
information embedded in time series �26–29� but also can be
used for studying nonlinear dynamic systems that cannot be
perfectly described by theoretical model.

In this paper, we apply complex networks to study gas-
liquid two-phase flow. Three different network construction
methods are proposed to build three types of networks, i.e.,
flow pattern complex network �FPCN�, fluid dynamic com-
plex network �FDCN�, and fluid structure complex network
�FSCN�. We first construct the FPCN that contains 90 nodes
using a unique method based on time-delay embedding and
modularity, and identify five vertical upward gas-liquid two-
phase flow patterns by detecting the community structure of
the resulting network. Then, in order to study the nonlinear
dynamics of gas-liquid two-phase flow, we construct 50 FD-
CNs under different flow conditions with each containing
2000 nodes. Moreover, we discuss the physical implications
of network degree distribution using the method of chaotic
recurrence plot. Based on the investigation on the relevant
statistical characteristics of the 50 resulting networks and
two complexity measures �Lempel and Ziv complexity and
approximate entropy�, we find that the power-law exponent
and network information entropy, which are sensitive to the
flow pattern transition, can both characterize the nonlinear
dynamics of gas-liquid two-phase flow. Finally, after propos-
ing a general method for constructing complex network
based on phase-space reconstruction, we construct FSCN
and demonstrate how network statistic can be used to reveal
the fluid structure of gas-liquid two-phase flow. Applying
complex networks to analyze the characteristics of gas-liquid
two-phase flow measurement fluctuant signals could be use-
ful exploration for revealing and understanding the flow pat-
tern transmission mechanism which cannot be described ac-
curately by mathematical model because of the complexity
and uncertainty it owns.

II. DEFINITION OF FLOW PATTERNS

The vertical upward gas-liquid two-phase flow patterns in
a pipe of inner diameter of 125 mm can be categorized into

five classes on the basis of the visual and video observations
and still photography, as well as the time-spatial characteris-
tic map of interfaces. According to Hewitt �30�, the five flow
patterns, observed in our experiment, can be defined as fol-
lows �Fig. 1�:

Bubble flow �Fig. 1�a��: this flow pattern occurs at low
gas flow rates where the gas phase is approximately uni-
formly distributed in the form of discrete bubbles in a con-
tinuum of liquid phase.

Bubble-slug transitional flow �Fig. 1�b��: this flow pattern
is characterized by the nonuniform distribution of the con-
centration of small bubbles in the flow direction. Small
bubble coalescence occasionally occurs in the part of high
bubble concentration, and as a result, a spherically capped
bubble is formed.

Slug flow �Fig. 1�c��: in this case, most of the gas appears
in large bullet shaped bubbles, also known as Taylor bubbles,
which have a diameter almost equal to the pipe diameter. The
liquid slug area between two Taylor bubbles is filled with
small bubbles that are very similar to those in bubble flow.

Slug-churn transitional flow �Fig. 1�d��: with an increase
in gas flow rate, for example, the gas-liquid interface of the
larger gas bubble becomes distorted near the nose but still
comparatively smooth in the bottom part of a cylindrical gas
bubble.

Churn flow �Fig. 1�e��: churn flow is a highly disordered
flow that happens at high gas flow rates because of instabili-
ties in the slugs. Churn flow can be interpreted as an irregu-
lar, chaotic, and disordered slug flow. It is also characterized
by an oscillatory flow, with the liquid phase moving alter-
nately upward and downward in the channel.

III. EXPERIMENTAL FLOW LOOP FACILITY
AND DATA ACQUISITION

The gas-liquid two-phase flow experiment in a 125-mm-
diameter vertical upward pipe was carried out in the multi-

(a) (b) (c)

(e)(d)

FIG. 1. The five vertical upward gas-liquid two-phase flow pat-
terns recorded by high-speed VCR system. �a� Bubble flow; �b�
bubble-slug transitional flow; �c� slug flow; �d� slug-churn transi-
tional flow; �e� churn flow.
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phase flow loop of Tianjin University. The whole measure-
ment system can be divided into several parts, including the
vertical multielectrode array �VMEA� conductance sensor
that was designed and optimized by our research team �31�,
high-speed video camera recorder �VCR�, exciting signals
generating circuit, signal modulating module, data-
acquisition device, and signal analysis software. The VMEA,
as shown in Fig. 2, consists of eight alloy titanium ring elec-
trodes axially separated and flush mounted on the inside wall
of the flowing pipe. E1 and E2 are exciting electrodes. C1-C2
and C3-C4 are two pairs of upstream and downstream corre-
lation electrodes denoted as sensors A and B, respectively.
Based on the cross-correlation technique, we can extract the
axial velocity of two-phase flow from fluctuating signals of
sensors A and B. H1-H2 is the volume fraction electrodes
denoted as sensor C. The fluctuating signals of sensor C are
mainly correlated with the phase volume fraction. The mea-
surement circuit is embedded inside the instrument, and sig-
nals were transmitted to the data acquisition and processing
system through cable connected outside the circuit tube. The
measurement system uses the 20 kHz constant voltage sine
wave to excite, and the virtual value of exciting voltage is
1.4 V. The signal modulating module is mainly constituted of
three modules, which are differential amplifier, sensitive de-
modulation, and low-pass filter. The data-acquisition equip-
ment is selected from the National Instrument Co.’s product
PXI 4472 data-acquisition card, which is based on the �PXI�
PCI EXtensions for Instrumentation, a peripheral bus spe-
cialized for data acquisition and real-time control system
main bus technology, equipped with eight channels and syn-
chronized acquiring function. The data processing part is re-
alized through graphical programming language LABVIEW 7.1

wrapped in the data-acquisition card, which can realize real
time data waveform displaying, storing, and analyzing.

The experimental plan was such that first we put a fixed
water flow rate into the pipe, then we gradually increased the
gas flow rate; every time we finish the proportion of gas flow
and water flow rates, we acquire one conductance fluctuating
signal from VMEA, and observed the flow pattern variation

by high-speed VCR. In the experiment, we set the resolution
at 640�480, the frame rate at 200 frames per second. Figure
1 shows the five flow patterns of gas-liquid two-phase flow
in a vertical upward pipe recorded by our high-speed VCR
system. The water phase flow rate was between 1–14 m3 /h,
of which the gas phase was between 0.2–130 m3 /h, and
there are 90 different proportions of gas flow and water flow
rates in this experiment. The sampling frequency was 400
Hz, and the sampling data recording time for one measuring
point was 60 s. We have acquired 90 conductance fluctuating
signals in the experiment all together. The conductance fluc-
tuating signals in five flow patterns, measured from sensor C,
are shown in Fig. 3, in which Qg and Qw represent gas flow
and water flow rates, respectively.

Because of the significant difference in electrical sensibil-
ity between gas and liquid phases, the random flow of gas
phase will cause voltage fluctuation on the measuring elec-
trode under a certain sinusoidal input, which implies that the
conductance fluctuating signals measured from the VMEA
conductance sensor are related to the flow pattern transition.
Thus, we construct complex networks from the conductance
fluctuating signals and study the gas-liquid two-phase flow
through analyzing the resulting networks.

IV. FLOW-PATTERN COMPLEX NETWORK

FPCN, extracted from the conductance fluctuating signals,
is an abstract network, in which each flow condition is rep-
resented by a single node and the edge is determined by the
strength of correlation between nodes. Flow condition here
means the flow behavior under different proportion of gas
flow and water flow rates in the pipe. Since we configured 90
different proportions of gas flow and water flow rates to get
90 conductance fluctuating signals in our gas-liquid two-
phase flow experiment, there are 90 different flow conditions
�i.e., the number of nodes contained in FPCN is 90�, and
each node corresponds to one of these 90 conductance fluc-
tuating signals.

Note that the correlation between two nodes means the
correlation between two corresponding conductance fluctuat-
ing signals. We now demonstrate how the strength of corre-
lation between conductance fluctuating signals can be used
to determine the edge. Considering the nonlinear character-
istics of the gas-liquid two-phase flow, we first apply the
method of time-delay embedding �32� to process the conduc-
tance fluctuating signals. That is, we use C-C method �33� to
calculate the delay time � from 90 conductance fluctuating
signals, respectively, and choose the proper � that can make
the FPCN modularity �34� largest. Then we extract six time-
domain features and four frequency-domain features from
each processed conductance fluctuating signal to form the
characteristic vector �see the following Sec. IV A for de-
tails�. That is, there are 90 characteristic vectors and each
vector contains ten elements. For each pair of characteristic
vectors, Ti and Tj, the correlation coefficient can be written
as

(b)(a)

FIG. 2. �Color online� The vertical multielectrode array
�VMEA� conductance sensor. �a� The VMEA measurement section;
�b� the geometry of VMEA.
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Cij =

�
k=1

M

�Ti�k� − �Ti�� · �Tj�k� − �Tj��

��
k=1

M

�Ti�k� − �Ti��2 ·��
k=1

M

�Tj�k� − �Tj��2

, �1�

where M is the dimension of the characteristic vector and

�Ti�= �
k=1

M

Ti�k� /M, �Tj�= �
k=1

M

Tj�k� /M. The elements Cij are re-

stricted to the domain −1�Cij �1, where Cij =1, 0, and −1
correspond to perfect correlations, no correlations, and per-
fect anticorrelations, respectively. C is a symmetric matrix
and Cij describes the state of connection between nodes i and
j. Finally, choosing a critical threshold rc �see the following
Sec. IV B for details�, the correlation matrix C can be con-
verted into adjacent matrix A, the rules of which read:

Aij = 	1, �
Cij
 � rc�
0, �
Cij
 � rc�

� . �2�

That is, there will be an edge connecting nodes i and j if

Cij
�rc. On the other hand, there will not be an edge con-
necting nodes i and j if 
Cij
�rc.

All the nodes and edges form the FPCN, and the topologi-
cal structure of this network can be described with the adja-
cent matrix A. The conditions Aij =1 and Aij =0 correspond to
connection and disconnection, respectively.

A. Feature extraction from conductance fluctuating signals

In this study, we extract ten different kinds of feature
quantities in both time and frequency domains. In the time
domain, we choose the maximum value, minimum value,
average value, standard deviation, asymmetry coefficient,
and kurtosis function as the features of signals; in the fre-
quency domain, we select the four coefficients of the linear
prediction model with four orders.
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FIG. 3. The conductance fluctuating signals in five flow patterns. �a� Bubble flow; �b� bubble-slug transitional flow; �c� slug flow; �d�
slug-churn transitional flow; �e� churn flow.
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Maximum value:

Max = max�x1,x2, . . . ,xn� . �3�

Minimum value:

Min = min�x1,x2, . . . ,xn� . �4�

Mean value:

x̄ =
1

n − 1�
i=1

n

xi. �5�

Standard deviation:

S = ��
i=1

n

�xi − x̄�2

n − 1


1/2

. �6�

Dissymmetry coefficient:

D =

�
i=1

n

�xi − x̄�3

�n − 1�S2 . �7�

Kurtosis coefficient:

K = ��
i=1

n

�xi − x̄�4

�n − 1�S4  − 3. �8�

The method of feature extraction in the frequency domain
was mainly referred to the way used by Darwich et al. �35�
which was based on the concept of linear prediction in
speech signal processing �36�. The basic principle of this
method is that the value of a signal point at present could be
estimated by the linear combination of several previous
points; the coefficient of this linear combination could be
acquired when the deviation between the true value and the
estimated value is minimum. The coefficients and previous
signals comprise a linear prediction model; the coefficients
are called the orders of this model, which are also what we
set as the frequency characteristic quantities. We assumed
that the input Zt could be expressed as follows:

Zt = − �
k=l

p

akZt-k + G�
l=0

q

blUt-l �b0 = 1� , �9�

where Ut-l are the unknown input signals, ak�1�k� p�,
bl�1� l�q�, and G are all system parameters, of which G is
the system gain, and ak�1�k� p�, the coefficients of the
linear combination, are just what we want as frequency char-
acteristic quantities. We choose the linear prediction model
with four orders, which means we only need to figure out a1,
a2, a3, and a4. The detailed computation process can be seen
in �36�.

B. Selection of the threshold

Before demonstrating how to select a critical threshold rc,
here we first introduce a quality function or “modularity”Q,

proposed by Newman et al. �34�. Let eij be the fraction of
edges in the network that connect nodes in community i to
those in community j, and let ai=� jeij. Then

Q = �
i

�eii − ai
2� �10�

is the fraction of edges that fall within communities, minus
the expected value of the same quantity if edges fall at ran-
dom without regard for the community structure. If a particu-
lar division gives no more within-community edges than
would be expected by random chance, we will get Q=0.
Values other than zero indicate deviations from randomness,
and in practice values greater than about 0.3 appear to indi-
cate significant community structure �34�.

The threshold rc determines the characteristics of the re-
sulting network. If it is extremely small, the pairs of nodes
with weak correlations are also connected. The physically
meaningful correlations in time series will be submerged by
these noises. Increasing the value of rc, the number of con-
nections among the points becomes smaller and smaller.
More and more of the noises are filtered out. But up to now,
there has not been a general method for selecting critical
threshold. In this study, we can expect a neighborhood of rc,
in which the structure of the resulting network can keep
stable. That is, a critical threshold rc can be found just by
simulating a special dynamical process of the complex net-
work, i.e., decreasing the number of connections by increas-
ing the value of rc while keeping the modularity of resulting
network almost unchanged. If there exists a neighborhood of
a threshold, in which the modularity of the resulting network
has been almost the same, we assert that such threshold rc is
just what we need in this paper.

By calculation, the modularity distribution of FPCN with
the change in delay time and threshold is shown in Fig. 4. As
can be seen, the modularity Q keeps stable when rc ranging
from 0.965 to 0.985 and the modularity Q reaches the largest
when �=7�t ��t is the sample interval of the conductance
fluctuating signals�. Therefore, according to the principle
mentioned above, we choose �=7�t and rc=0.975 to derive
the FPCN.

V. FLOW-PATTERN IDENTIFICATION IN FPCN

A. Community-detection algorithm based on K-mean clustering

Community-detection algorithm based on K-mean cluster-
ing, proposed in this paper, means that we use K-mean ap-
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FIG. 4. The modularity distribution of FPCN with the change in
delay time and threshold.
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proach to do clustering analysis on the data which are ac-
quired through conversion by Capocci’s approach �37� to
reveal the network community structure.

Capocci approach: Capocci recasted the eigenproblem
into an optimization problem. Let the standard matrix be
defined as

N = K−1A. �11�

Consider the following constrained optimization problem:
Let z�x� be defined as

z�x� =
1

2 �
i,j=1

n

�xi − xj�2Aij , �12�

where xi are values assigned to the nodes, with some con-
straint on the vector X, expressed by

�
i,j=1

1

xixjmij = 1, �13�

where mij are elements of a given symmetric matrix M. The
stationary points of z over all X subject to constraint �12� are
the solutions of

�D − A�X = �MX, �14�

where D is the diagonal matrix:

D = �dij� �15�

dij = �ij�
k=1

n

Aik,

A is the adjacency matrix, n is the number of nodes, and � is
a Lagrange multiplier.

Different choices of the constraint M leads to different
eigenvalue problems: for example, choosing M=D leads to
the eigenvalue problem D−1AX= �1−2��X, while M=I leads
to �D−A�X=�X. Thus, M=D and M=I correspond to the
eigenproblems for the �generalized� normal and Laplacian
matrices, respectively.

Capocci et al. �37� have proven that, for a network with
significant community structure, the first nontrivial eigenvec-
tor components of the standard matrix N could be used to
study its community structure. Therefore, we use the eigen-
vectors of standard matrix to conduct the clustering analysis
and then convert to the corresponding nodes to reveal the
community structure.

B. Flow-pattern identification based on community structure

After constructing the FPCN containing 90 nodes, we
show in Fig. 5 the distribution of the corresponding elements
of the three first nontrivial eigenvectors. As can be seen,
three different communities can be clearly identified when
the components of the first nontrivial eigenvector a1 are plot-
ted versus those of a2 and a3. The community structure of the
FPCN, detected by community-detection algorithm based on
K-mean clustering, is shown in Fig. 6. The community struc-
ture is drawn by the software “UCINET” and “NETDRAW.”

From the detected community structure, as shown in Fig.
6, three communities of 21, 30, and 39 nodes are found,
denoted as communities a, b, and c, respectively. Further-
more, combining with the experimental observations using
high-speed VCR, we find that community a mainly corre-
sponds to bubble flow, such as nodes 2 �Qg=0.2 m3 /h, Qw
=2.0 m3 /h� and 16 �Qg=0.94 m3 /h, Qw=12.0 m3 /h� both
corresponding to bubble flow; community b mainly corre-
sponds to slug flow, such as nodes 31 �Qg=2.1 m3 /h, Qw
=2.0 m3 /h� and 44 �Qg=4.1 m3 /h, Qw=6.0 m3 /h� both
corresponding to slug flow; community c mainly corresponds
to churn flow, such as nodes 70 �Qg=69.0 m3 /h, Qw
=4.0 m3 /h� and 90 �Qg=139.0 m3 /h, Qw=2.0 m3 /h� both
corresponding to churn flow; the nodes of the FPCN that
connect tightly between communities a and b correspond to
bubble-slug transitional flow, such as nodes 19 �Qg
=1.0 m3 /h, Qw=2.0 m3 /h� and 26 �Qg=1.7 m3 /h, Qw
=4.0 m3 /h� both corresponding to the bubble-slug transi-
tional flow; the nodes of the FPCN that connect tightly be-
tween communities b and c correspond to slug-churn transi-
tional flow, such as nodes 32 �Qg=38.0 m3 /h, Qw
=8.0 m3 /h� and 58 �Qg=25.0 m3 /h, Qw=4.0 m3 /h� both
corresponding to the slug-churn transitional flow. Hence,
through detecting the community structure of the FPCN by
the community-detection algorithm based on K-mean clus-
tering, we have achieved good identification of gas-liquid
two-phase flow pattern by finding the three communities
which correspond to the bubble flow, slug flow, and churn

FIG. 5. �Color online� Components of the first nontrivial eigen-
vector a1 are plotted versus those of a2 and a3.

FIG. 6. �Color online� Community structure of the FPCN.
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flow, respectively, and the nodes that connect tightly between
two communities corresponding to the transitional flow.

VI. FLUID DYNAMIC COMPLEX NETWORK

To cast light into the nonlinear dynamics of gas-liquid
two-phase flow, we construct FDCN from one conductance
fluctuating signal with each segment of signal time series
represented by a single node and edge determined by the
strength of correlation between segments. Considering a con-
ductance fluctuating signal �i.e., a time series�, denoted as
�k1 ,k2 ,k3 , . . . . . . ,kN�, we can obtain all the possible segments
with length L, which read

�S1 = �k1,k2, . . . ,kL�� ,

�S2 = �k2,k3, . . . ,kL+1�� ,

�S3 = �k3,k4, . . . ,kL+2�� ,

]

�Sm = �km,km+1,km+2, . . . ,km+L−1�
m = 1, . . . ,N − L + 1� .

�16�

For each pair of segments, Si and Sj, the correlation coeffi-
cient can be written as

Cij =

�
k=1

L

�Si�k� · Sj�k��

��
k=1

L

�Si�k��2 ·��
k=1

L

�Sj�k��2

. �17�

C is a symmetric matrix, and Cij describes the state of con-
nection between nodes i and j. Choosing a critical threshold
rc, the correlation matrix C can be converted into adjacent
matrix A, the rules of which read: Aij =1 if 
Cij
�rc and
Aij =0 if 
Cij
�rc.

Rho et al. �38� consider the characteristics of the degree
distribution functions for the constructed networks. At a spe-
cial critical threshold the degree distribution will tend to
obey a power law. The network at this transition point is used
to detect nontrivial characteristics embedded in the autocor-
relation matrix. Through the analysis of the evolution of
FDCN containing 2000 nodes, we find that the resulting net-
work can keep well the physically meaningful correlations
when rc is chosen as 0.95 �see Fig. 7 for details�.

The other adjustable parameter is the length of a segment,
denoted as L. Short length will induce overestimated corre-
lations �28�. Increasing the length L can depress the finite-
length-induced statistical fluctuations effectively. It should
be long enough to give a reliable result. As shown in Fig. 7,
we find that, when rc and L are chosen as 0.95 and 50,
respectively, the degree distribution of the resulting network
can be well fitted with a power law as follows:

p�k� � k−	, �18�

where the degree �or connectivity� k of a node is the number
of edges incident with it, and the degree distribution p�k� is

defined as the probability that a node chosen uniformly at
random has degree k; 	 is the power-law exponent of degree
distribution. In this study, we can expect a stability region of
L, in which the resulting network can reveal the physically
meaningful information embedded in the time series. That is,
a proper L can be found just by simulating a special dynami-
cal process of the complex network, i.e., changing the num-
ber of nodes and connections by increasing the value of L
while keeping the power-law exponent of resulting network
almost unchanged. By calculation, we plot the distribution of
power-law exponent of different flow patterns in Fig. 8.
From Fig. 8, it is clear that the power-law exponent keeps
stable when L ranges from 45 to 55. Thus, we choose L
=50 and rc=0.95 to derive the FDCN.
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FIG. 7. �Color online� Evolution of the FDCN constructed from
the conductance fluctuating signal of bubble flow �Qg=0.2 m3 /h,
Qw=2.0 m3 /h�. When rc=0.95, the degree distribution obeys a
power law. With the decrease in rc, more and more edges are added,
which may induce statistical fluctuations in the degree distribution.
Finally, the power law is submerged in statistical noises. All the
four figures are plotted in log-log scale.
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FIG. 8. �Color online� The power-law exponent distribution of
five FDCNs with the change in segment length. Bubble flow �Qg

=0.2 m3 /h, Qw=2.0 m3 /h�; bubble-slug transitional flow �Qg

=1.0 m3 /h, Qw=2.0 m3 /h�; slug flow �Qg=4.1 m3 /h, Qw

=6.0 m3 /h�; slug-churn transitional flow �Qg=25.0 m3 /h, Qw

=4.0 m3 /h�; churn flow �Qg=139.0 m3 /h, Qw=2.0 m3 /h�.
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VII. FLUID DYNAMICS OF GAS-LIQUID TWO-PHASE
FLOW IN FDCN

A. Network degree distribution and its physical implications

By considering segments as nodes and associating net-
work connectivity with the correlation among segments,
time-domain dynamics are naturally encoded into a network
configuration. We select five types of flow pattern conduc-
tance fluctuating signals for constructing five FDCNs with
each containing 2000 nodes. After investigating the degree
distribution of the five networks, we find their degree distri-
butions can be well fitted with a power law, which indicates
the scale-free property of the FDCN �see Fig. 9 for details�.

To reveal the physical implications of the degree distribu-
tion of FDCNs, the method of recurrence plot �39� is em-
ployed. The recurrence plots of the five typical conductance
fluctuating signals are shown in Fig. 10. Because of the sto-
chastic motion of large number of small bubbles, random-
ness is the main property of bubble flow conductance fluc-
tuating signal, which can be reflected by the texture of its
recurrence plot �i.e., large number of homogeneous discrete
points� �see Fig. 10�a��. But with the increase in gas super-
ficial velocity due to the periodic alternating movement be-
tween gas and liquid plugs, the slug flow conductance fluc-
tuating signal exhibits the periodic property to some extent,
and this property can be reflected by the texture of slug flow
recurrence plot �i.e., obvious linellaes along principal diago-

nal as well as the black intermittent rectangular blocks� �see
Fig. 10�c��. So the correlation of slug flow conductance fluc-
tuating signal is much better than that of the bubble flow.
Since the edges of FDCN are determined by the strength of
correlation between segments of conductance fluctuating sig-
nal, there are more high degree nodes and less low degree
nodes in the FDCN from slug flow than in the FDCN from
bubble flow, just as shown in Figs. 9�a�–9�c�. When the gas
superficial velocity is high because of the unstable oscilla-
tion, the churn flow conductance fluctuating signal exhibits
weak periodic property as well as random property, which
can be reflected by the texture of churn flow recurrence plot
�i.e., small black intermittent rectangular blocks as well as
large number of homogeneous discrete points� �see Fig.
10�e��. So there are less high degree nodes and more low
degree nodes in the FDCN from churn flow than in the
FDCN from slug flow, just as shown in Figs. 9�d� and 9�e�.

More high degree nodes and less low degree nodes im-
plies small degree distribution power-law exponent. In con-
trast, more low degree nodes and less high degree nodes
implies large degree distribution power-law exponent. To
further explore the variations in the degree distribution
power-law exponent in flow pattern transition, we construct
50 FDCNs under different flow conditions and calculate their
corresponding power-law exponents. From Fig. 11, we could
see that the power-law exponents of bubble flow and bubble-
slug transitional flow are usually large, and the power-law
exponent decreases as the flow pattern evolves from bubble
flow to slug flow. But with further increase in gas superficial
velocity, the power-law exponent increases as the flow pat-
tern evolves from slug flow to churn flow. Usg and Usw, in
Fig. 11, represent gas superficial velocity and water superfi-
cial velocity, respectively.

B. Network information entropy

The concept of Shannon’s entropy �40� is the central role
of information theory sometimes referred to as measure of
uncertainty. The entropy of a random variable is defined in
terms of its probability distribution and can be shown to be a
good measure of uncertainty. To calculate the information
entropy I, Shannon also gave the equation as follows:

I = kB ln 
 = − �
j=1

N

kBP�j�ln P�j� , �19�

where 
 is the information; P�j�=1 /
; kB is the Boltzmann
constant.

According to the definition of Shannon’s entropy, we de-
fine network information entropy for the FDCN and expect
to investigate the nonlinear dynamics of gas-liquid flow
through analyzing the network information entropy.

Definition 1: let p�i� be the importance of node i:

p�i� = ki/�
j=1

N

kj , �20�

where N is the number of nodes contained in the network; ki
�kj� is the degree of node i �j�.

Definition 2: let E be the network information entropy:
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FIG. 9. �Color online� Degree distribution of different types of
FDCNs in log-log scale. �a� Bubble flow �Qg=0.2 m3 /h, Qw

=2.0 m3 /h�; �b� bubble-slug transitional flow �Qg=1.0 m3 /h, Qw

=2.0 m3 /h�; �c� slug flow �Qg=4.1 m3 /h, Qw=6.0 m3 /h�; �d�
slug-churn transitional flow �Qg=25.0 m3 /h, Qw=4.0 m3 /h�; �e�
churn flow �Qg=139.0 m3 /h, Qw=2.0 m3 /h�.
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E = − �
i=1

N

kBp�i�ln p�i� , �21�

where N is the number of nodes contained in the network and
kB is the Boltzmann constant. In order to simplify the calcu-
lation, here we let kB=1, that is:

E = − �
i=1

N

p�i�ln p�i� . �22�

In order to make the network information entropy not
affected by the number of nodes contained in the network,
we normalize E as follows:

(b)(a)

(c) (d)

(e)

FIG. 10. Texture of recurrence plot of five flow patterns. �a� Bubble flow �Qg=0.2 m3 /h, Qw=2.0 m3 /h�; �b� bubble-slug transitional
flow �Qg=1.0 m3 /h, Qw=2.0 m3 /h�; �c� slug flow �Qg=4.1 m3 /h, Qw=6.0 m3 /h�; �d� slug-churn transitional flow �Qg=25.0 m3 /h, Qw

=4.0 m3 /h�; �e� churn flow �Qg=139.0 m3 /h, Qw=2.0 m3 /h�.
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EN =
E − Emin

E − Emax
=

− �
i=1

N

p�i�ln p�i� −
ln 4�N − 1�

2

− �
i=1

N

p�i�ln p�i� − �− �
i=1

N
1

N
ln

1

N
� .

�23�

We calculate the network information entropy from the 50
constructed FDCNs. Figure 12 shows the variations in net-
work information entropy with the change in flow pattern. As
can be seen, the network information entropy decreases as
the flow pattern evolves from bubble flow to slug flow but
increases as the flow pattern evolves from slug flow to churn
flow.

C. Nonlinear dynamics of gas-liquid two-phase flow

Representing the conductance fluctuation signal through a
corresponding FDCN, we can then explore the nonlinear dy-
namics of gas-liquid two-phase flow from network organiza-
tion, which is quantified via a number of topological statis-
tics. The previous study of our research team has indicated
that the Lempel and Ziv complexity �41�, and approximate
entropy �42� are sensitive to the flow pattern transition in
gas-liquid two-phase flow �for details, see reference �43��.
Here we show, in Fig. 13, the variations in these two com-
plexity measures with the change in flow pattern. From Figs.
11 and 12 as well as Fig. 13, we could see that there are good

corresponding relations between complexity measures and
the FDCN topological statistics �i.e., power-law exponent
and network information entropy�. When the gas superficial
velocity is low due to the stochastic motion of large number
of small bubbles, the dynamics of bubble flow are very com-
plex, corresponding to the large power-law exponent and net-
work information entropy. In the transition from bubble flow
to slug flow, the dynamics of this transitional flow becomes
relatively simple, resulting in the decrease in the two net-
work statistics. Owing to the periodic alternating movements
between gas and liquid plugs, the dynamics of slug flow are
very simple and that is why the two network statistics de-
crease as the flow pattern evolves from bubble flow to slug
flow. When the gas superficial velocity is high, churn flow,
which is composed of discrete gas phase and continuous liq-
uid phase of high turbulent kinetic energy, gradually appears
with the phenomenon of fluctuation. Because of the influence
of the turbulence effect, the dynamics of churn flow becomes
more complex than that of slug flow, corresponding to the
increase in the two network statistics as the flow pattern
evolves from slug flow to churn flow. Hence, the power-law
exponent and network information entropy, which are sensi-
tive to the flow pattern transition, can both characterize the
nonlinear dynamics of gas-liquid two-phase flow.

VIII. COMPLEX NETWORK FROM TIME SERIES BASED
ON PHASE SPACE RESCONSTRUCTION

In fact, the traditional nonlinear time-series analysis meth-
ods �chaotic attractor morphology, complexity measures, and
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FIG. 11. The power-law exponent distribution in semilog scale
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chaotic recurrence plot� cannot effectively reveal the com-
plex fluid structure of gas-liquid two-phase flow. Although
the network construction algorithm mentioned in Sec. VI can
be applied to investigate the fluid dynamics of gas-liquid
two-phase flow to a certain extent, it may have difficulties in
getting enough information to study the fluid structure of
two-phase flow. An important advantage of utilizing a phase-
space reconstruction is that, if the embedding is chosen ap-
propriately, the topological distribution of the set of vector
points in phase space will accurately reflect the underlying
dynamics of the original system. Therefore, the network in-
ferred from that phase-space reconstruction can be related
directly back to the evolution operator of the underlying dy-
namical system.

In this section, we not only propose a general method for
constructing complex network from a time series based on
phase-space reconstruction but also associate different as-
pects of the dynamics of the time series with the topological
indices of the network. Moreover, we demonstrate how such
statistics can be used to distinguish different dynamical re-
gimes.

We start from the phase-space reconstruction. Takens’
embedding theorem �44�, which is very often invoked as the
motivation for applying a time delay embedding to recon-
struct phase space from a time series, can be described as
following for arbitrary time series z�it�, i=1,2 . . . ,M �t is
sampling interval, M is the sample size�; if the embedding
delay time is selected as �, and the embedding dimension as
m, the vector point in phase space can be represented as
follow:

Xk
� = �xk�1�,xk�2�, . . . ,xk�m��

= �z�kt�,z�kt + ��, . . . ,z�kt + �m − 1���� , �24�

where k=1,2 , . . . ,N, N=M − �m−1��� / t denotes the total
vector points of the reconstructed phase space. C-C method
�33� is the frequent method that can be used for determining
the delay time � and embedding dimension m. Through
studying four algorithms that can be used for selecting �, i.e.,
mutual information-I �45�, mutual information-II �46�, auto-
correlation function method, and C-C method, our research
team has in Ref. �47� indicated that C-C method shows good
antinoise ability. Hence, we in this section using C-C method
reconstruct phase space from time series.

After reconstructing phase space from a given time series,
denoted as �z�1� ,z�2� , . . . ,z�M��, we proceed to construct
complex network by considering each vector point in recon-
structed phase space as a basic node and using the phase-
space distance to determine network connection. The phase-

space distance between vector points Xi
� and Xj

�, in this study,
is defined as

dij = �
n=1

m

�Xi�n� − Xj�n�� , �25�

where Xi�n�=z�i+ �n−1��� and Xj�n�=z�j+ �n−1��� is the

nth element of Xi
� and Xj

�, and m and � is the embedding
dimension and delay time, respectively. Choosing a critical
threshold rc, the distance matrix D= �dij� can be converted

into adjacent matrix A= �aij�, the rules of which read: aij =1
if dij �rc and aij =0 if dij �rc. The topological structure of
the network can be described with the adjacent matrix A, and
the conditions aij =1 and aij =0 correspond to connection and
disconnection, respectively.

An appropriate threshold therefore should be chosen to
fully preserve the main property of the network but not to be
too large that it may obscure or conceal the local property by
overconnecting the nodes. We employ the network density
�29� to study the threshold, which is defined as the number of
edges divided by the largest number of edges possible. In
order to show how to select a suitable threshold, a chaotic
time series from Lorenz system �see Fig. 14�a�� is studied by
this method, and Fig. 15 shows the density of the constructed
network versus the threshold r. As can be seen in Fig. 15�b�,
the increase in degree reaches the maximum rate at about
rc=7.6, where we set the critical threshold. We explain here
why we set the threshold r at this critical point. It can be
imagined that the degree increases more rapidly as the
threshold changes within the cluster radius due to the adja-
cency of the nodes inside. For a network from a chaotic
system that has many clusters differing in sizes, it can be
further imagined that the edge increase will arrive at the
maximum rate as the threshold approaches the critical point
rc, i.e., the “mean radius” of all the clusters. The network
obtained at rc will maintain the clustering property, and
thresholds beyond this value will result in a much slower
edge increase, causing redundant connections among nodes.
Consequently we choose rc to derive the network. Further-
more, it should be noted that the size of the network �the
length of the time series� will influence rc.

Before further analysis, we here give an intuitive descrip-
tion of the loop layout in phase space for chaotic systems in
terms of the unstable periodic orbits �UPOs�. Unstable peri-
odic orbits embedded in the chaotic attractor are fundamental
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FIG. 14. Two different time series that are used to construct
complex networks. �a� Chaotic time series from Lorenz system; �b�
white-noise time series.

0 15 30 45 60
0.0

0.2

0.4

0.6

0.8

1.0

dc=7.6

D
en
si
ty

Threshold
0 15 30 45 60

0.00

0.02

0.04

dc=7.6

D
er
iv
at
iv
e

Threshold(b)(a)

FIG. 15. �Color online� Complex network from the Lorenz sys-
tem with 600 nodes. �a� Density versus threshold; �b� Derivative of
density versus threshold, with rc=7.6.

FLOW-PATTERN IDENTIFICATION AND NONLINEAR … PHYSICAL REVIEW E 79, 066303 �2009�

066303-11



to the understanding of the chaotic dynamics �48,49�. For a
chaotic attractor, its trajectory will typically switch or hop
among different UPOs. Specifically, the trajectory will ap-
proach an unstable periodic orbit along its stable manifold.
This approach can last for several loops during which the
orbit remains close to the UPO. Eventually, the orbit is
ejected along the unstable manifold and proceeds until it is
captured by the stable manifold of another UPO. A UPO of
order n contains n loops lying in different locations in phase
space. Each loop that belongs to a certain UPO-n has many
other loops in its vicinity due to the attraction of the stable
manifold associated with the UPO-n. It then becomes a cen-
ter of a cluster and the density of the neighbors is related to
its stability decided by the vector field along its trajectory.
Since the stability of each center loop may vary, there are
sparse as well as dense regions in the structure of constructed
complex network. Due to the fact that the loops in phase
space are spatially clustered around the UPOs and we are
using phase space to determine the network connection, there
are multiple clusters in the complex network generated from
chaotic time series.

We now demonstrate how to discriminate different dy-
namical regimes of the time series through investigation of
the degree correlations and Pearson coefficient of two dis-
tinct complex networks from the chaotic time series �Lorenz
system� and white-noise time series �details of the two dif-
ferent time series can be seen in Fig. 14�. An important way
of capturing the degree correlations is to examine the aver-
age degree of the nearest neighbors of nodes with degree k
�50�, which is defined as

knn�k� = �
k�

k�P�k�
k� , �26�

where P�k� 
k� denotes the conditional probability that an
edge of degree k connects a node with degree k�. If there are
no degree correlations, Eq. �26� gives knn�k�= �k2� / �k�, i.e.,
knn�k� is independent of k. Correlated networks are classified
as assortative mixing if knn�k� is an increasing function of k,
whereas they are referred to as disassortative mixing when
knn�k� is a decreasing function of k. In other words, in assor-
tative networks the nodes tend to connect to their connectiv-
ity peers while in disassortative networks nodes with low
degree are more likely connected with highly connected
ones. As can be seen in Fig. 16, knn�k� increases with k for
chaotic Lorenz system while it decreases with k for noisy

time series. In order to quantify such a correlation, we also
calculate the Pearson coefficient �51� which is defined as
follows. Let ekl�=elk� be the joint probability distribution for
an edge to be with a node with connectivity k at one end and
a node with connectivity l at the other. Its marginal, qk

=�lekl, obeys the normalization condition, �kqk=1. Then, the
Pearson correlation coefficient is given by

r =
1

�q
2�k,l

kl�ekl − qkql� , �27�

where �q
2=�kk

2qk− ��kkqk�2 is the variance of qkr� �−1,1�,
and r is positive �negative� for assortative �disassortative�
mixing. The Pearson coefficient of the network containing
600 nodes from chaotic Lorenz system and noisy time series
is 0.2297 and −0.0037, respectively. Consistently with the
one obtained from the analysis of the nearest-neighbor aver-
age connectivity, the Pearson correlation coefficient is posi-
tive, confirming that the network from chaotic time series
has assortative mixing. On the other hand, the network from
noisy time series is of disassortative mixing. We can explain
why the network corresponding to chaotic time series pos-
sesses the property of assortative mixing in terms of UPOs.
For a complex network generated from chaotic time series,
there are multiple clusters and most nodes connected to each
other within the same cluster have a roughly similar number
of connected neighbors or degrees �except for a few on the
margin of the cluster�. The common degree shared by the
nodes from one cluster may differ from that of another be-
cause of the different stability of the center loop of UPOs.
This has led to the fact that nodes with similar degrees are
interconnected to each other, i.e., assortative mixing, because
they belong to the same cluster.

In summary, we in this section have proposed an effective
method for constructing complex network from a time series,
and it is worth pointing out that this method can be used for
analyzing time series from any kind of complex system.
Through investigating the complex networks generated from
two different complex dynamic systems, we find that the
constructed network inherits main properties of the time se-
ries in its structure. Furthermore, by exploring the network
topology statistics, we have demonstrated that the degree
correlations and Pearson coefficient can fundamentally re-
flect the clustering property of the nodes induced by the
UPOs. Construction of networks from time series is a com-
mon problem in diverse research. The proposed strategy may
be a reasonable solution to this problem.

IX. FLUID STRUCTURE OF GAS-LIQUID FLOW IN FSCN

We construct fluid structure complex network �FSCN� of
2000 nodes using the method mentioned in Sec. VIII and
make a further investigation on their assortative mixing
property. The structure of FSCNs with 200 nodes generated
from three typical flow patterns are shown in Fig. 17.
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plots� of the networks containing 600 nodes from �a� Lorenz system
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We now demonstrate how the statistic of FSCN can be
used to reveal the fluid structure of gas-liquid two-phase
flow. In the bubble flow, the gas phase is approximately uni-
formly distributed in the form of discrete small bubbles in a
continuum of liquid phase, and no obvious bubble coales-
cence can be observed. While in the slug flow, due to the
bubble coalescence, many large bubbles which have a diam-
eter almost equal to the pipe diameter appear. Bubble coales-
cence, which has an important impact on the fluid structure
of gas-liquid two-phase flow, can be reflected by many UPOs
in the reconstructed phase space. For a FSCN from slug flow,
there are multiple clusters which are caused by the bubble
coalescence, and most nodes connected to each other within
the same cluster have a roughly similar number of connected
neighbors or degrees. The common degree shared by the
nodes from one cluster may differ from that of another be-
cause of the different stability of the center loop of UPOs.
This has led to the fact that the FSCN from slug flow pos-
sesses the property of strong assortative mixing �for details,
see Fig. 18�b��, while no assortative mixing can be found in
the FSCN from bubble flow �see Fig. 18�a��. Churn flow can
be interpreted as an irregular, chaotic, and disordered slug
flow. Since bubble coalescence and bubble collapse both ex-
ist in the fluid structure of churn flow, the FSCN from churn
flow also possesses the property of assortative mixing. But
compared with the FSCN from slug flow, the FSCN from
churn flow shows weak assortative mixing, which may be
caused by the bubble collapse �for details, see Fig. 18�c��.

Therefore, we have associated the fluid structure of gas-
liquid two-phase flow with the topological indices of FSCN,
and indicate that the assortative mixing property of FSCN
can effectively reveal the gas-liquid fluid structure to some
extent.

X. CONCLUSIONS

In summary, we have introduced complex network theory
to the study of gas-liquid two-phase flow. Using a unique

method based on time-delay embedding and modularity, we
construct FPCN from conductance fluctuating signals. Then
we put forward a unique flow pattern identification method
of gas-liquid two-phase flow by combining the community
structure of FPCN.

In order to study the nonlinear dynamics of gas-liquid
two-phase flow, 50 FDCNs under different flow conditions
are constructed, and the nonlinear dynamics can then be
studied by investigating the statistical characteristics of those
networks. Moreover, using the method of chaotic recurrence
plot, we have discussed the physical implications of the de-
gree distribution of FDCNs. Based on the investigation of
the statistical characteristics of FDCNs, we confirm that the
power-law exponent and network information entropy, which
are sensitive to the flow pattern transition, can both charac-
terize the nonlinear dynamics of gas-liquid two-phase flow.

Since the FDCN as well as the traditional nonlinear time-
series analysis methods �PSD, Wigner-Ville Distribution
�WVD��, chaotic attractor morphology, complexity mea-
sures, and chaotic recurrence plot� cannot effectively reveal
the complex fluid structure of gas-liquid two-phase flow, we
propose a general method, which can be used for analyzing
time series from any kind of complex system, to study the
fluid structure of gas-liquid two-phase flow. We construct
FSCN using this method and demonstrate that the distinction
in topological structure of FSCN can really reflect the bubble
coalescence and bubble collapse in gas-liquid fluid structure.

The last decade has witnessed the birth of a new move-
ment of interest and research in the study of complex net-
works, and the massive and comparative analysis of net-
works from different fields have produced a series of
unexpected and dramatic results. With the study presented in
this paper, a natural bridge between complex networks and
two-phase flow has now been built. Further research on the
self-organizing and self-evolution in these networks will help
us establish a flow-evolution network model to explore the
complex mechanism in two-phase flow.

(a) (b)

(c)

FIG. 17. �Color online� The structure of FSCN containing 200
nodes from �a� bubble flow �Qg=0.2 m3 /h, Qw=2.0 m3 /h� with
rc=0.012, �b� slug flow �Qg=4.1 m3 /h, Qw=6.0 m3 /h� with rc

=0.16, and �c� churn flow �Qg=139.0 m3 /h, Qw=2.0 m3 /h� with
rc=0.11.
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FIG. 18. The regular plots of the nearest-neighbor average con-
nectivity of nodes with respect to connectivity of the networks con-
taining 2000 nodes from �a� bubble flow �Qg=0.2 m3 /h, Qw

=2.0 m3 /h� with rc=0.031, �b� slug flow �Qg=4.1 m3 /h, Qw

=6.0 m3 /h� with rc=0.35, and �c� churn flow �Qg=139.0 m3 /h,
Qw=2.0 m3 /h� with rc=0.26.
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